Optimal sensor configuration for ultrasonic guided-wave inspection based on value of information

Condition-based maintenance critically relies on efficient and reliable structural health monitoring systems, where the number, position and type of sensors are determined according to rational and principled criteria. This paper proposes the use of the value of information and the relative expected information gain as optimality criteria to determine the best number and positions of sensors, respectively. The proposed methodology is general, but in this paper it is specialized for ultrasonic guided-wave optimal system configuration. Two case studies are used to illustrate the suitability of the proposed methodology in providing the optimal sensor configuration of an ultrasonic guided-wave based structural health monitoring system. The results confirm the value of information as an efficient and rational index to compare among different sensor positioning strategies, while accounting for the underlying modeling and…

Publication date

Category

Scientific article

Authors